五磷酸钕激光器

何慧娟 陆国贤 赵梅村 赵隆兴 (中国科学院上海光机所)

Neodymium pentaphosphate laser

He Huijuan Lu Guoxian Zhao Meicun Zhao Longxin (Shanghai Institute of Optics and Fine Mechanics, Academia Sinica)

Abstract

The experimental setup, test method and laser performances at room temperature for a neodymium pentaphosphate laser with a single transverse mode longitudinally pumped by a dye laser at 0.58μ m are described. The optical slope efficiency is ~10%, threshold energy for single transverse mode is ~40 μ j. Oscillation threshold for single mode of longitudinal pumping was estimated with a simple computer model. They agree each other within the experimental error of 10%. A single pulse without Q-switching can be obtained by appropriately varying the cavity parameters.

一、前 言

NdP₅O₁₄ 晶体及其他类似的化合物中, Nd³⁺ 浓度高达 4×10²¹ 厘米⁻³,比常用的掺 Nd1% 的YAG大 30 倍而其浓度猝灭效应 却很小,因而只需很小的工作样品就可获得 较大的激光增益,极有利于器件小型化。它 不但可以替代低功率 Nd:YAG 激光器的许 多应用,而且由于其具备光谱宽度窄、模特性 好、光束发散角小等特点,有可能解决一般半 导体激光器因这几个特性差而在应用中受到 的限制。如:NdP₅O₁₄ 激光器可以因其光耦合 效率高及具有低的吸收、散射损耗而适宜于 做光导纤维通讯系统的光源。从发展来看,

• 16 •

将来在航天飞行器之间的几毫瓦至几十毫瓦 的通讯、光子计算机中的逻辑光源、集成光学 中的集成激光器等方面它都有应用的广阔前 景。正因为如此,它受到人们的相当重视,必 然地已成为光电子技术发展的方向之一。

不少兄弟单位都已在组织此类化合物晶体的生长,我们采用山东大学晶体研究所生长的 NdP₅O₁₄ 工作样品首次实现了脉冲染料激光器泵浦的单模 NbP₅O₁₄ 激光器的室温运转。

二、实验装置及实验方法

1. 实验装置示于图 1。 收稿日期: 1979年4月24日。

图1 NdP5O14 激光器实验装置

1—直管氙灯泵浦的染料激光器; 2、4—0.58 微米
45°全反射镜; 3—场阑(\$20); 5—泵浦光聚焦透镜, f=10 厘米; 6—平行平面腔片; 7—NdP₅O₁₄
晶体; 8—凹面腔片; 9—可拆卸的1.05 微米45°
全反射镜; 10—1.05 微米窄带干涉滤光片及滤
0.58 微米的颜色玻璃片, 11—强流光电管(GD44) 或光电倍增管 (GDB-28); 12—脉冲示波器
(SS-212); 13—内调焦平行光管

直管脉冲氙灯泵浦的单块棱镜调谐的若 丹明 6G 染料激光器: 0.58 微米,光谱半宽 度~40Å,1次/秒,脉冲半强度宽度~1微 秒,束散角~3 毫弧度。

泵浦光经场阑及二块 45°全反镜以后由 聚焦透镜 聚于 NdP₅O₁₄ 晶体上, 1.05 微米 的激光经 45°全反镜及滤光片由强流光电管 或光电倍增管检测在示波器上显示。

为了取得单模低阈值运转并考虑到调整 精度的要求,采用准半共心腔,经抛光后厚度 为1.1毫米的晶片用弹性胶粘贴于平面腔片 上, b 轴方向通光。平面腔片1.05 微米的反 射率 $r_1=99.3\%$, 0.58 微米的透过率 $T_1=$ 70%, 凹面腔片曲率半径 $\rho=60$ 毫米, 1.05 微米的透过率 1.5%。 腔长及透镜位置可 调。

2. 实验方法

本实验主要工作分三部分。

首先用内调焦平行光管把腔准直好,然 后泵入0.58 微米激光,调节二块全反镜及聚 焦透镜使入射光束与腔轴准直。在强光泵条 件下实现激光振荡,腔的调整精度要求是不 高的,要实现单模低阈值运转,腔的调整精度 是要求高的;为了判别1.05微米的激光输出, 可先利用1.05 微米的荧光与激光在脉宽上 存在的极大差异把荧光与激光区分开,然后 在接收元件处放置单色仪把0.58 微米的泵 浦光与1.05微米的激光分开,也可以把腔长 拉长使腔由介稳半共心腔变为非稳腔以区 分0.58微米的泵浦光和1.05微米的激光; 一般激光脉冲能量多数用炭斗能量卡计来测 定,可是此类卡计仅能测到毫焦耳级,我们 装置中的激光能量多半在微焦耳~几十微焦 耳水平,炭斗测量法已经失灵,经过几种方法 的比较与实践,最后我们用强流光电管线性 转换区脉冲积分的办法完成了弱能量的测 量,这种方法的特点是光路对准容易且在环 境电磁干扰小的情况下测量精度高,可测到 微焦耳级以下,仅需改变一下强流光电管的 阳极负载就可以测量脉冲波形,使用相当方 便。

三、实验结果及与理论 计算的比较

1. 腔长 d=50.8 毫米时适当调节聚焦 透镜至晶体间的距离,输出 1.05 微米的激光 脉冲波形如图 2。其中(a)为光泵较强时的 激光弛豫脉冲,由一个主脉冲及数个小脉冲 组成,弛豫振荡衰减时间~2 微秒。(b)为光 泵经适当减弱后出现的单个激光脉冲的展 宽波形,脉冲半强度宽度~140 毫微秒。

图 2 1.05 微米激光脉冲波形

• 17 •

(a) 双端输出; (b) 单端输出(实测)

2. 腔长 59 毫米,聚焦透镜至晶体间距 离为 126 毫米时激光多模输出能量由标定过 的强流光电管积分测定,光能转换效率关系 曲线示于图 3。其中实线可在凹面腔片输出 端实测所得,虚线为计及平面 腔片 端 会 有 0.5%的耦合输出所得。泵浦光能量为透过 平面腔片直接到达晶体入射表面的能量,用 灵敏炭斗测定,光能转换斜率效率~10%,光 量子转换效率~18%,与 H. P. Weber 等人 的结果相同^[1]。

3. 腔长 39 毫米,聚焦透镜至晶体间距 离调节到 122.5 毫米时振荡模斑尺寸最大 的 TEM₀₀ 模近场图示于图 4 (在激光器输出 端用红外变像管直接接收显示)。

图 4 TEM₀₀ 模场图

4. 当改变输出镜的反射率 r₂时,测定了 对应基模振荡的阈值,并由阈值~ln(r₁r₂) 曲线得到了实腔的非耦合损耗率(包括晶体 的共振损耗及非共振损耗),~2.3%,见图 5。其中"+"号为实验测量值,"^o"号表示 泵浦光与基模空间完全重合近似模型算得的

图5 阈值~ln(r1r2)关系

理论值。计算公式如下:

$$\omega_0^2 = (\lambda/\pi) \sqrt{d(\rho - d)}^{[2]}$$
(1)

(1)式中的 ω₀ 为基模在晶体入射面上光斑的 半径(当晶片厚度远小于腔长时,晶体厚度之 微弱影响忽略不计)。 λ 为振荡波长, d 为腔 几何长度, ρ 为凹面腔片曲率半径。

当泵浦光脉宽远小于 Nd³⁺ 荧光寿命时, 由自发辐射微扰起动的正反馈放大器模型出 发可导出激光脉冲振荡阈值能量面密度为:

$$E_{th} = hcL_c \times 10^{-7}/2\lambda_p \alpha_p \sigma F \eta^{[3]} \qquad (2)$$

其中 L。——实腔往返总激光损耗率,

- λ----泵浦波长,
- *α*_n——激光工作样品对泵浦光之吸收 率,
- F——4F_{3/2}态激光能级上的 Nd³⁺ 百 分粒子数,
- η ——泵浦光子进入 $4F_{3/2}$ 态的转换 效率,
- σ----Nd³⁺在1.05 微米的受激发射 截面,
- h——普朗克常量,
- *c*——光速。

按式(1)和(2)算得的理论值及实验值列于表 1,由表可见两者在近似模型及误差范围内较 好地得到符合。

λ (厘米)	1.05×10^{-4}	1.05×10^{-4}	1.05×10^{-4}
λ _p (厘米)	0.58×10^{-4}	0.58×10^{-4}	0.85×10^{4}
a _p (%)	100	100	100
F (%)	63	63	63
σ (厘米²)	1.8×10^{-19}	1.8×10 ⁻¹⁹	1.8×10 ⁻¹⁹
η (%)	60	60	60
<i>d</i> / (厘米)	3.9	3.9	3.9
ρ (厘米)	6.0	6.0	6.0
ω ₀ (厘米)	9.83×10 ⁻³	9.83×10 ⁻³	9.83×10 ⁻³
πω ₀ ² (厘米 ²)	3.04×10^{-4}	3.04×10^{-4}	3.04×10-4
r ₁ (%)	99.3	99.3	99.3
r2 (%)	98.5	95.8	87
$\ln r_1 r_2$	-0.022	-0.049	-0.146
L _c (%)	2.3+0.7 +1.5=4.5	2.3+0.7 +4.2=7.2	2.3+0.7 +13=16
<i>. E_{th}</i> (微焦耳/厘米 ²)	1.4×10 ⁵	2.23×10^{5}	5×10^{5}
<i>E_{th}•πω</i> ² (微焦耳)	42	67	150
<i>E</i> _{th实验} (微焦耳)	42	72	162

表1 阈值能量计算表及实验值

四、结束语

 由基模运转阈值能量的实验值与理 论计算值的较好符合验证了纵向泵浦简单计 算模型的可行性,在实验精度及实验误差没 有得到很好提高的条件下不必采用更加精细 的计算模型。由实际测量可知腔的非耦合损 耗高达2.3%,这说明只要晶体光学质量进 一步提高,真空涂膜使反射率进一步提高以 及腔片调整架精度的提高,可望得到更低的 阈值振荡能量。

2. 纵向泵浦的方式可方便地实现模式 控制,进而可实现模式调制,在特定的应用场 合也许激光模式调制的特性可加以利用。模 式花样见图 6。

图 6 调节聚焦透镜位置呈现的激光模式

 适当控制光泵能量可方便地实现单脉冲运转。如果适当改变谐振腔参数(诸如: 腔长、损耗等),可望在一定脉宽范围内获得 不带Q开关的脉宽可调的激光单脉冲。

参考文献

- [1] Appl. Phys. Lett., 22, 534(1973).
- [2] Appl. Opt., 5, 1557 (1966).
- [3] J. Appl. Phys., 46, 1194(1975).